| η <sub>α</sub> = –        | diameter of bottom lens       |                                                                                                                      |
|---------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                           | 2 x focal length              |                                                                                                                      |
| $\eta_{\mathfrak{a}} \ X$ | eyepiece magnification        | = line separation (in mm)                                                                                            |
| η. =                      | N SIN() where "N<br>ha<br>ent | J" is the index of refraction and $\theta$ is the f-angle of the maximum cone of light that can er or exit the lens. |



In microscopy, NA is crucial because it is the indicator of resolving power of a lens. More specifically, the finest detail that can be separated equals  $\lambda$ /NA, where  $\lambda$  is the wavelength of the light (an average of 550nm is generally used for white light since visible light ranges from 400nm to 700nm). Therefore, a lens with a larger numerical aperture will resolve smaller points than a lens with a smaller numerical aperture.