Theory and formulation for approximating focal distance of a system

The correct focal length of a lens for an application can be calculated very easily using one of the two formulas:

where FDH represents the format dimension height and FDW represents format dimension width.

The image sensor in the camera is a rectangle. Therefore, the height and width (in millimeters) of the rectangle for each sensor format is:

NOTE: You do not have to remember the following diagram as long as you remember how to use the two formulas above.

1 INCH FORMAT LENS

$$
\begin{aligned}
& \text { focal length }(f)=\frac{9.6 \times(\text { distance })}{(\text { height })} \\
& \text { focal length }(f)=\frac{12.8 \times(\text { distance })}{(\text { width })}
\end{aligned}
$$

1/2 INCH FORMAT LENS

$$
\begin{aligned}
& \text { focal length }(f)=\frac{4.8 \times(\text { distance })}{(\text { height })} \\
& \text { focal length }(f)=\frac{6.4 \times(\text { distance })}{(\text { width })}
\end{aligned}
$$

2/3 INCH FORMAT LENS

focal length $(f)=\frac{6.6 \times \text { (distance })}{(\text { height })}$
focal length $(f)=\frac{8.8 \times(\text { distance })}{(\text { width })}$
$1 / 3$ INCH FORMAT LENS
focal length $(f)=\frac{3.6 \times(\text { distance })}{(\text { height })}$
focal length $(f)=\frac{4.8 \times(\text { distance })}{(\text { width })}$

