Theory and formulation for approximating focal distance of a system

The correct focal length of a lens for an application can be calculated very easily using one of the two formulas:

where FDH represents the format dimension height and FDW represents format dimension width.

The image sensor in the camera is a rectangle. Therefore, the height and width (in millimeters) of the rectangle for each sensor format is:

NOTE: You do not have to remember the following diagram as long as you remember how to use the two formulas above.

•	f	distance —	
1 INCH FORMAT LENS		2/3 INCH FORMAT LENS	
focal length (f) =	<u>9.6 x (distance)</u> (height)	focal length (f) =	<u>6.6 x (distance)</u> (height)
focal length (f) =	<u>12.8 x (distance)</u> (width)	focal length (f) =	<u>8.8 x (distance)</u> (width)
1/2 INCH FORMAT LENS		1/3 INCH FORMAT LENS	
focal length (f) =	<u>4.8 x (distance)</u> (height)	focal length (f) =	<u>3.6 x (distance)</u> (height)

facel laneth (f) -	<u>6.4 x (distance)</u>	
tocal length (t) =	(width)	

<u>4.8 x (distance)</u> focal length (f) =

(width)